Naïve Noncommutative Blowups at Zero-dimensional Schemes: an Appendix
نویسنده
چکیده
R = R(X,Z,L, σ) = H(X, R) = k ⊕H(X, R1)⊕H(X, R2)⊕ · · · By [RS2, Theorem 3.1], R is noetherian with qgr-R ' qgr-R. Proposition 1.2. [RS2, Proposition 3.20]. Keep the above assumptions and assume that L is also ample and generated by its global sections. Then there exists M ∈ N such that, for m ≥M : (1) In ⊗ L⊗m n is generated by its global sections for all n ≥ 1. (2) R(X,Z,L⊗m, σ) is generated in degree 1.
منابع مشابه
Naïve Noncommutative Blowups at Zero-dimensional Schemes
In an earlier paper [KRS] we defined and investigated the properties of the näıve blowup of an integral projective scheme X at a single closed point. In this paper we extend those results to the case when one näıvely blows up X at any suitably generic zero-dimensional subscheme Z. The resulting algebra A has a number of curious properties; for example it is noetherian but never strongly noether...
متن کاملNa¨ive Noncommutative Blowups at Zero-dimensional Schemes
In an earlier paper [KRS] we defined and investigated the properties of the na¨ıve blowup of an integral projective scheme X at a single closed point. In this paper we extend those results to the case when one na¨ıvely blows up X at any suitably generic zero-dimensional subscheme Z. The resulting algebra A has a number of curious properties; for example it is noetherian but never strongly noeth...
متن کاملFrobenius Morphisms of Noncommutative Blowups
We define the Frobenius morphism of certain class of noncommutative blowups in positive characteristic. Thanks to a nice property of the class, the defined morphism is always flat. Therefore we say that the noncommutative blowups in this class are Kunz regular. One of such blowups is the one associated to a regular Galois alteration. From de Jong’s theorem, we see that for every variety over an...
متن کاملNoncommutative Resolution, F-blowups and D-modules
We explain the isomorphism between the G-Hilbert scheme and the F-blowup from the noncommutative viewpoint after Van den Bergh. In doing this, we immediately and naturally arrive at the notion of D-modules. We also find, as a byproduct, a canonical way to construct a noncommutative resolution at least for a few classes of singularities in positive characteristic.
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015